翻訳と辞書
Words near each other
・ Jacquet
・ Jacquet (game)
・ Jacquet de Berchem
・ Jacquet Flyer
・ Jacquet Island
・ Jacquet module
・ Jacquet of Mantua
・ Jacquet River railway station
・ Jacquet River, New Brunswick
・ Jacquetta Hawkes
・ Jacquetta May
・ Jacquetta of Luxembourg
・ Jacquetta Wheeler
・ Jacquette Ada
・ Jacquette Löwenhielm
Jacquet–Langlands correspondence
・ Jacqueville
・ Jacquez
・ Jacquez Green
・ Jacqui
・ Jacqui Abbott
・ Jacqui Ainsley
・ Jacqui Benkenstein
・ Jacqui Boydell
・ Jacqui Burke
・ Jacqui Cheer
・ Jacqui Cooper
・ Jacqui Cowderoy
・ Jacqui Dankworth
・ Jacqui Dean


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Jacquet–Langlands correspondence : ウィキペディア英語版
Jacquet–Langlands correspondence
In mathematics, the Jacquet–Langlands correspondence is a correspondence between automorphic forms on GL2 and its twisted forms, proved by using the Selberg trace formula. It was one of the first examples of the Langlands philosophy that maps between L-groups should induce maps between automorphic representations. There are generalized versions of the Jacquet–Langlands correspondence relating automorphic representations of GL''r''(''D'') and GL''dr''(''F''), where ''D'' is a division algebra of degree ''d''2 over the local or global field ''F''.
Suppose that ''G'' is an inner twist of the algebraic group GL2, in other words the multiplicative group of a quaternion algebra. The Jacquet–Langlands correspondence is bijection between
*Automorphic representations of ''G'' of dimension greater than 1
*Cuspidal automorphic representations of GL2 that are square integrable (modulo the center) at each ramified place of ''G''.
Corresponding representations have the same local components at all unramified places of ''G''.
and extended the Jacquet–Langlands correspondence to division algebras of higher dimension.
==References==

*
*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Jacquet–Langlands correspondence」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.